Logo Leibniz Universität Hannover
Logo Leibniz Universität Hannover
  • Zielgruppen
  • Suche
 

Prof. Thomas Brüser studied Biology (Biochemistry, Genetics, Organic Chemistry) at the University of Cologne and the University of Sussex (Brighton, UK) from 1989 to 1994.

1995-1999: PhD studies at the University of Bonn

1999: PhD in Microbiology: “Enzymology of oxidative sulfur metabolism: Biochemistry and genetics of bacterial APS:phosphate adenylyl transferases”

2000-2001: Postdoc at the University of Pennsylvania (Philadelphia, USA):  Cytochrome cbb3 biogenesis in Rhodobacter capsulatus and Tat-dependent protein translocation in Escherichia coli

2002-2009: Research group leader at the University of Halle-Wittenberg

2006: Habilitation in Microbiology: “Tat-dependent transport of proteins across biological membranes”

Since Oct. 2009: Full professor (W3) at the Leibniz University Hannover

Awards

2000: PhD award of the German Society of General and Applied Microbiology (VAAM)

2007: Christian-Wolff-Award of the University of Halle-Wittenberg

Research interests

  • Transport of folded proteins by the bacterial Tat pathway (more)
  • Membrane stress and the phage shock response (more
  • Protein folding and cofactor assembly pathways 
  • Bacterial chaperone systems
  • Membrane protein complexes 
  • Microbial cell biology 
  • Anaerobic respirations 
  • Bacterial photosynthesis pathways

Publications

43.Mehner-Breitfeld, D., Rathmann, C., Riedel, T., Just, I., Gerhard, R., Overmann, J., and Brüser, T. (2018) Evidence for an adaptation of a phage-derived holin/endolysin system to toxin transport in Clostridioides difficile. Front. Microbiol., 9:2446
42.Ringel, M.T., and Brüser, T. (2018) The biosynthesis of pyoverdines. Microb. Cell, 5, 424-437
41.Heidrich, E.S., and Brüser, T. (2018) Evidence for a second regulatory binding site on PspF that is occupied by the C-terminal domain of PspA. PLoS ONE 13, e0198564
40.Hou, B., Heidrich, E.S., Mehner-Breitfeld, D., and Brüser, T. (2018) The TatA component of the twin-arginine translocation sysem locally weakens the cytoplasmic membrane of Escherichia coli upon protein substrate binding. J. Biol. Chem. 293, 7592-7605
39.Ringel, M.T., Dräger, G., and Brüser, T. (2018) PvdO is required for the oxidation of dihydropyoverdine as last step of fluorophore formation in Pseudomonas fluorescens. J. Biol. Chem. 293, 2330-2341
38.Ringel, M.T., Dräger, G., and Brüser, T. (2017) The periplasmic transaminase PtaA of Pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to α-ketoglutaric acid. J. Biol. Chem. 292, 18660-18671
37.Thurotte, A., Brüser, T., Mascher, T. and Schneider, D. (2017) Membrane chaperoning by members of the PspA/IM30 protein family, Commun Integr Biol. 10, e1264546
36.Rathmann, C., Schlösser, A., Schiller, J., Bogdanov, M., and Brüser, T. (2017) Tat transport in Escherichia coli requires zwitterionic phosphatidylethanolamine but no specific negatively charged phospholipid. FEBS Lett. 591, 2848-2858
35.Ringel, M.T., Dräger, G., and Brüser, T. (2016) PvdN enzyme catalyzes a periplasmic pyoverdine modification. J. Biol. Chem. 291, 23929-23938
34.Stolle, P., Hou, B., and Brüser, T. (2016) The Tat substrate CueO is transported in an incomplete folding state. J. Biol. Chem. 291, 13520-13528
33.Osadnik H, Schöpfel M, Heidrich E, Mehner D, Lilie H, Parthier C, Risselada HJ, Grubmüller H, Stubbs MT, Brüser T. (2015) The PspF-binding domain PspA1-144 and the PspA·F complex - New insights into the coiled-coil dependent regulation of AAA+ proteins. Mol. Microbiol. 98, 743-759
32.Taubert, J., Hou, B., Risselada, H.J., Mehner, D., Lünsdorf, H., Grubmüller, H., and Brüser, T. (2015) TatBC-independent TatA/Tat substrate interactions
contribute to transport efficiency. PLoS ONE 10, e0119761
31.Taubert, J., and Brüser, T. (2014) Twin-arginine translocation-arresting protein regions contact TatA and TatB. Biol. Chem. 395, 827-836.
30.Niggemann, J., Bozko, P., Bruns, N., Wodtke, A., Gieseler, M.T., Thomas, K., Jahns, C., Nimtz, M., Reupke, I., Brüser, T., Auling, G., Malek, N., Kalesse, M. (2014) Baceridin, a cyclic hexapeptide from an epiphytic Bacillus strain, inhibits the proteasome. Chembiochem. 15, 1021-1029.
29.Behrendt J, Brüser T. (2014) The TatBC complex of the Tat protein translocase in Escherichia coli and its transition to the substrate-bound TatABC complex. Biochemistry. 53, 2344-2354
28.Mehner, D., Osadnik, H., Lünsdorf, H., and Brüser, T. (2012) The Tat system for membrane translocation of folded proteins recruits the membrane-stabilizing Psp machinery in Escherichia coli. J. Biol. Chem. 287, 27834-27842
27.Brehmer, T., Kerth, A., Graubner, W., Malesevich, M., Hou, B., Brüser, T., and Blume, A. (2012) Negatively charged phospholipids trigger the interaction of a bacterial Tat substrate precursor with lipid monolayers. Langmuir  28, 3534-3541
26.Hou, B., and Brüser, T. (2011) The Tat-dependent protein translocation pathway. Biomol. Concepts, 2, 507-523
25.Lindenstrauß, U., Matos, C., Graubner, W., Robinson, C., and Brüser, T. (2010) Malfolded recombinant Tat substrates are Tat-independently degraded in Escherichia coli. FEBS Letters, 584, 3644-3648
24.Lindenstrauß, U., and Brüser, T. (2009) Tat-transport of linker-containing proteins in Escherichia coli. FEMS Letters 295, 135-140
23. Weininger, U., Haupt, C., Schweimer, K., Graubner, W., Kovermann, M., Brüser, T., Scholz, C., Schaarschmidt, P., Zoldak, G., Schmidt, F.X., and Balbach, J. (2009) NMR solution structure of SlyD from Escherichia coli: Spatial separation of prolyl isomerase and chaperone function. J. Mol. Biol. 387, 295-305
22.Standar, K., Mehner, D., Osadnik, H., Berthelmann, F., Hause, G., Lünsdorf, H., and Brüser, T. (2008) PspA can form large scaffolds in Escherichia coli. FEBS Letters, 582, 3585-3589
21.Berthelmann, F., Mehner, D., Richter, S., Lindenstrauß, U. Hause, G., Lünsdorf, H., and Brüser, T. (2008) Recombinant expression of tatABC and tatAC results in the formation of interacting cytoplasmic TatA-tubes in Escherichia coli. J. Biol. Chem., 283, 25281-25289
20.Natale, P., Brüser, T., and Driessen, A.J. (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane - distinct translocases and mechanisms. BBA Biomembranes, 1778, 1735-1756
19.Richter, S., Lindenstrauß, U., Lücke, C., Bayliss, R., and Brüser, T. (2007) Functional Tat transport of unstructured, small, hydrophilic proteins. J. Biol. Chem., 282, 33257-33264
18.Behrendt, J., Lindenstrauß, U., and Brüser, T. (2007) TatC recruits TatB and prevents its multimerization in Escherichia coli. FEBS Letters, 581, 4085-4090
17.Brüser, T. (2007) The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production. Appl. Microbiol. Biotechnol., 76, 35-45
16.Graubner, W., Schierhorn, A., and Brüser, T. (2007) DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone. J. Biol. Chem., 282, 7116-7124
15.Lindenstrauss, U., and Brüser, T. (2006) Conservation and variation between Rhodobacter capsulatus and Escherichia coli Tat systems. J. Bacteriol., 188, 7807-7814
14.Sturm, A., Schierhorn, A., Lindenstrauss, U., Lilie, H., and Brüser, T. (2006) YcdB from Escherichia coli reveals a novel class of Tat-dependently translocated hemoproteins. J. Biol. Chem., 281, 13972-13978.
13.Richter, S., and Brüser, T. (2005) Targeting of unfolded PhoA to the Tat translocon of Escherichia coli. J. Biol. Chem, 280, 42723-42730
12.Berthelmann, F., and Brüser, T. (2004) Localization of the Tat translocon components in Escherichia coli. FEBS Lett., 569, 82-88
11.Behrendt, J., Standar, K., Lindenstrauss, U., and Brüser, T. (2004) Topological studies on the twin-arginine translocase component TatC. FEMS Microbiol. Lett., 234, 303-308
10.Kipping, M., Lilie, H., Lindenstrauss, U., Andreesen, J.R., Griesinger, C., Carlomagno, T., and Brüser, T. (2003) Structural studies on a twin-arginine signal sequence. FEBS Lett. 550, 18-22
9.Brüser, T., Brune, D., Yano, T., and Daldal, F. (2003) Membrane targeting of a folded and cofactor containing protein. Eur. J. Biochem. 270, 1211-1221
8.Brüser, T., and Sanders, C. (2003) An alternative model of the twin-arginine translocation system, Microbiol. Res. 158, 7-17
7.Rose, R. W., Brüser, T., Kissinger, J.C., and Pohlschröder, M. (2002) Adaptation of protein secretion to extremely high salt conditions by extensive use of the twin arginine translocation pathway. Mol. Microbiol. 45, 943-950
6.Brüser, T., Selmer, T., and Dahl, C. (2000) "ADP sulfurylase" from Thiobacillus denitrificans is an adenylylsulfate:phosphate adenylyltransferase and belongs to a new family of nucleotidyltransferases. J. Biol. Chem. 275, 1691-1698
5.Brüser, T., Deutzmann, R., and Dahl, C. (1998) Evidence against the double-arginine motif as the only determinant for protein translocation by a novel Sec-independent pathway in Escherichia coli. FEMS Microbiol. Lett.164, 329-336
4.Reinartz, M., Tschäpe, J., Brüser, T., Trüper, H.G., and Dahl, C. (1998) Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch. Microbiol. 170, 59-68
3.Brüser, T., Trüper, H.G., and Dahl, C. (1997) Cloning and sequencing of the gene encoding the high potential iron-sulfur protein (HiPIP) from the purple sulfur bacterium Chromatium vinosum. Biochim. Biophys. Acta 1352, 18-22
2.Strange, R.W., Dodd, F.E., Abraham, Z.H.L., Grossmann, J.G., Brüser, T., Eady, R.R., Smith, B.E., and Hasnain, S.S. (1995) The substrate binding site in nitrite reductase and its similarity to Zn carbonic anhydrase. Nature Struct. Biol. 2, 287-292
1.Howes, B.D., Abraham, Z.H.L., Lowe, D.J., Brüser, T., Eady, R.R., and Smith, B.E. (1994) EPR and electron nuclear double resonance (ENDOR) studies show nitrite binding to type two copper centers of the dissimilatory nitrite reductase of Alcaligenes xylosoxidans (NCIMB 11015). Biochemistry 33, 3171-3177