Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions

verfasst von
M. Zaman, K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai, S. X. Chang, T. Clough, K. Dawar, W. X. Ding, P. Dörsch, M. dos Reis Martins, C. Eckhardt, S. Fiedler, T. Frosch, J. Goopy, C.-M. Görres, A. Gupta, S. Henjes, M. E. G. Hofmann, M. A. Horn, M. M. R. Jahangir, A. Jansen-Willems, K. Lenhart, L. Heng, D. Lewicka-Szczebak, G. Lucic, L. Merbold, J. Mohn, L. Molstad, G. Moser, P. Murphy, A. Sanz-Cobena, M. Šimek, S. Urquiaga, R. Well, N. Wrage-Mönnig, S. Zaman, J. Zhang, C. Müller
Abstract

MethodsMethod and techniques are described for automatedAutomation, automated measurements of greenhouse gasesGreenhouse Gases (GHGs) (GHGsGreenhouse Gases (GHGs)) in both the laboratory and the field. Robotic systems are currently available to measure the entire range of gases evolved from soils including dinitrogenDinitrogen (N2) (N2). These systems usually work on an exchange of the atmospheric N2Dinitrogen (N2) with heliumHelium (He) (He) so that N2Dinitrogen (N2) fluxes can be determined. Laboratory systems are often used in microbiology to determine kineticKinetics response reactions via the dynamics of all gaseous N species such as nitric oxideNitric oxide (NO) (NO), nitrous oxideNitrous oxide (N2O) (N2O), and N2Dinitrogen (N2). Latest HeHe incubation incubation techniques also take plants into account, in order to study the effect of plant--soil interactions on GHGsGreenhouse Gases (GHGs) and N2Dinitrogen (N2) production. The advantage of automatedAutomation, automated in-field techniques is that GHG emission rates can be determined at a high temporal resolution. This allows, for instance, to determine diurnal response reactions (e.g. with temperatureTemperature regulation, temperature) and GHGGreenhouse Gases (GHGs) dynamics over longer time periods.

Organisationseinheit(en)
Institut für Mikrobiologie
Externe Organisation(en)
Justus-Liebig-Universität Gießen
Internationale Atomenergie-Organisation (IAEA)
Norwegian University of Life Sciences (NMBU)
Universität Rostock
University College Dublin
Karlsruher Institut für Technologie (KIT)
Nanjing Normal University
University of Alberta
Lincoln University
The University of Agriculture, Peshawar
Chinese Academy of Sciences (CAS)
Embrapa Agrobiologia Seropédica, Brazilian Agricultural Research Corporation
Technische Universität Darmstadt
International Livestock Research Institute
Hochschule Geisenheim University
Bangladesh Agricultural University
Fachhochschule Bingen
University of Wroclaw
Picarro, Inc.
Laboratory for Air Pollution & Environmental Technology, Empa Dübendorf
Universidad Politécnica de Madrid (UPM)
University of South Bohemia
Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei
Universität Canterbury
Typ
Beitrag in Buch/Sammelwerk
Seiten
109-139
Anzahl der Seiten
31
Publikationsdatum
30.01.2021
Publikationsstatus
Veröffentlicht
ASJC Scopus Sachgebiete
Ingenieurwesen (insg.), Agrar- und Biowissenschaften (insg.), Umweltwissenschaften (insg.)
Elektronische Version(en)
https://doi.org/10.1007/978-3-030-55396-8_3 (Zugang: Offen)