Gesamtliste
Zeige Ergebnisse 51 - 60 von 221
2022
Schumacher, M. A., Wörmann, M. E., Henderson, M., Salinas, R., Latoscha, A., Al-Bassam, M. M., Singh, K. S., Barclay, E., Gunka, K., & Tschowri, N. (2022). Allosteric regulation of glycogen breakdown by the second messenger cyclic di-GMP. Nature Communications, 13(1), Artikel 5834. https://doi.org/10.1038/s41467-022-33537-w
Shenouda, M. L., Ambilika, M., Skellam, E., & Cox, R. J. (2022). Heterologous Expression of Secondary Metabolite Genes in Trichoderma reesei for Waste Valorization. Journal of Fungi, 8(4), Artikel 355. https://doi.org/10.3390/jof8040355
Shenouda, M. L. K. L. (2022). Natural products isolation from Trichoderma reesei. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. Leibniz Universität Hannover. https://doi.org/10.15488/11828
Strauss, J., Biasi, C., Sanders, T., Abbott, B. W., von Deimling, T. S., Voigt, C., Winkel, M., Marushchak, M. E., Kou, D., Fuchs, M., Horn, M. A., Jongejans, L. L., Liebner, S., Nitzbon, J., Schirrmeister, L., Walter Anthony, K., Yang, Y., Zubrzycki, S., Laboor, S., ... Grosse, G. (2022). A globally relevant stock of soil nitrogen in the Yedoma permafrost domain. Nature Communications, 13(1), Artikel 6074. https://doi.org/10.1038/s41467-022-33794-9, https://doi.org/10.15488/13978
Sugue, M.-F., Burdur, A. N., Ringel, M. T., Dräger, G., & Brüser, T. (2022). PvdM of fluorescent pseudomonads is required for the oxidation of ferribactin by PvdP in periplasmic pyoverdine maturation. Journal of Biological Chemistry, 298(8), Artikel 102201. https://doi.org/10.1016/j.jbc.2022.102201
Sugue, M.-F. (2022). Towards understanding the mechanisms of the periplasmic pyoverdine maturation. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. Leibniz Universität Hannover. https://doi.org/10.15488/11907
Sultanta, N., ZHAO, J., Cai, Y., RAHMAN, G. K. M. M., ALAM, M. S., FAHEEM, M., Ho, A., & JIA, Z. (2022). Methanotrophy-driven accumulation of organic carbon in four paddy soils of Bangladesh. PEDOSPHERE, 32(2), 348-358. https://doi.org/10.1016/S1002-0160(20)60030-3
Timsy, T., Behrendt, U., Ulrich, A., Foesel, B. U., Spanner, T., Neumann-Schaal, M., Wolf, J., Schloter, M., Horn, M. A., & Kolb, S. (2022). Genomic evidence for two pathways of formaldehyde oxidation and denitrification capabilities of the species Paracoccus methylovorus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 72(10), Artikel 005581. https://doi.org/10.1099/ijsem.0.005581
Wang, C., Thielemann, L., Dippold, M. A., Guggenberger, G., Kuzyakov, Y., Banfield, C. C., Ge, T., Günther, S., Bork, P., Horn, M. A., & Dorodnikov, M. (2022). Can the reductive dissolution of ferric iron in paddy soils compensate phosphorus limitation of rice plants and microorganisms? Soil Biology and Biochemistry, 168, Artikel 108653. https://doi.org/10.1016/j.soilbio.2022.108653
Wang, C., Thielemann, L., Dippold, M. A., Guggenberger, G., Kuzyakov, Y., Banfield, C. C., Ge, T., Guenther, S., Bork, P., Horn, M. A., & Dorodnikov, M. (2022). Microbial iron reduction compensates for phosphorus limitation in paddy soils. Science of the Total Environment, 837, Artikel 155810. https://doi.org/10.1016/j.scitotenv.2022.155810