Disease resistance breeding in rose

Current status and potential of biotechnological tools

authored by
Thomas Debener, David H. Byrne
Abstract

The cultivated rose is a multispecies complex for which a high level of disease protection is needed due to the low tolerance of blemishes in ornamental plants. The most important fungal diseases are black spot, powdery mildew, botrytis and downy mildew. Rose rosette, a lethal viral pathogen, is emerging as a devastating disease in North America. Currently rose breeders use a recurrent phenotypic selection approach and perform selection for disease resistance for most pathogen issues in a 2-3 year field trial. Marker assisted selection could accelerate this breeding process. Thus far markers have been identified for resistance to black spot (Rdrs) and powdery mildew and with the ability of genotyping by sequencing to generate 1000s of markers our ability to identify markers useful in plant improvement should increase exponentially. Transgenic rose lines with various fungal resistance genes inserted have shown limited success and RNAi technology has potential to provide virus resistance. Roses, as do other plants, have sequences homologous to characterized R-genes in their genomes, some which have been related to specific disease resistance. With improving next generation sequencing technology, our ability to do genomic and transcriptomic studies of the resistance related genes in both the rose and the pathogens to reveal novel gene targets to develop resistant roses will accelerate. Finally, the development of designer nucleases opens up a potentially non-GMO approach to directly modify a rose's DNA to create a disease resistant rose. Although there is much potential, at present rose breeders are not using marker assisted breeding primarily because a good suite of marker/trait associations (MTA) that would ensure a path to stable disease resistance is not available. As our genomic analytical tools improve, so will our ability to identify useful genes and linked markers. Once these MTAs are available, it will be the cost savings, both in time and money, that will convince the breeders to use the technology.

Organisation(s)
Faculty of Natural Sciences
Section Molecular Plant Breeding
External Organisation(s)
Texas A and M University
Type
Review article
Journal
Plant science
Volume
228
Pages
107-117
No. of pages
11
ISSN
0168-9452
Publication date
01.11.2014
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Genetics, Agronomy and Crop Science, Plant Science
Electronic version(s)
https://doi.org/10.1016/j.plantsci.2014.04.005 (Access: Unknown)