Mechanical forces orchestrate the metabolism of the developing oilseed rape embryo

authored by
Hardy Rolletschek, Aleksandra Muszynska, Jörg Schwender, Volodymyr Radchuk, Björn Heinemann, Alexander Hilo, Iaroslav Plutenko, Peter Keil, Stefan Ortleb, Steffen Wagner, Laura Kalms, André Gündel, Hai Shi, Jörg Fuchs, Jedrzej Jakub Szymanski, Hans-Peter Braun, Ljudmilla Borisjuk
Abstract

The initial free expansion of the embryo within a seed is at some point inhibited by its contact with the testa, resulting in its formation of folds and borders. Although less obvious, mechanical forces appear to trigger and accelerate seed maturation. However, the mechanistic basis for this effect remains unclear. Manipulation of the mechanical constraints affecting either the in vivo or in vitro growth of oilseed rape embryos was combined with analytical approaches, including magnetic resonance imaging and computer graphic reconstruction, immunolabelling, flow cytometry, transcriptomic, proteomic, lipidomic and metabolomic profiling. Our data implied that, in vivo, the imposition of mechanical restraints impeded the expansion of testa and endosperm, resulting in the embryo's deformation. An acceleration in embryonic development was implied by the cessation of cell proliferation and the stimulation of lipid and protein storage, characteristic of embryo maturation. The underlying molecular signature included elements of cell cycle control, reactive oxygen species metabolism and transcriptional reprogramming, along with allosteric control of glycolytic flux. Constricting the space allowed for the expansion of in vitro grown embryos induced a similar response. The conclusion is that the imposition of mechanical constraints over the growth of the developing oilseed rape embryo provides an important trigger for its maturation.

Organisation(s)
Institute of Plant Genetics
External Organisation(s)
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)
Genomics and Biology of Fruit Crops Department
Type
Article
Journal
The new phytologist
ISSN
0028-646X
Publication date
24.07.2024
Publication status
E-pub ahead of print
Peer reviewed
Yes
ASJC Scopus subject areas
Physiology, Plant Science
Electronic version(s)
https://doi.org/10.1111/nph.19990 (Access: Open)