Cardiolipin Supports Respiratory Enzymes in Plants in Different Ways

authored by
Jakob Petereit, Kenta Katayama, Christin Lorenz, Linda Ewert, Peter Schertl, Andreas Kitsche, Hajime Wada, Margrit Frentzen, Hans Peter Braun, Holger Eubel
Abstract

In eukaryotes the presence of the dimeric phospholipid cardiolipin (CL) is limited to the mitochondrial membranes. It resides predominantly in the inner membrane where it interacts with components of the mitochondrial electron transfer chain. CL deficiency has previously been shown to affect abundances of the plant NADH-dehydrogenase complex and its association with dimeric cyctochrome c reductase. Using an Arabidopsis thaliana knock-out mutant for the final enzyme of CL biosynthesis we here extend current knowledge on the dependence of plant respiration on CL. By correlating respiratory enzyme abundances with enzymatic capacities in mitochondria isolated from wild type, CL deficient and CL complemented heterotrophic cell culture lines a new picture of the participation of CL in plant respiration is emerging. Data indicate a loss of a general reduction of respiratory capacity in CL deficient mitochondria which cannot solely be attributed to decreased abundances or capacities of mitochondrial electron transfer protein complexes and supercomplexes. Instead, it most likely is the result of a loss of the mobile electron carrier cytochrome c. Furthermore, enzymes of the tricarboxylic acid cycle are found to have lower maximum activities in the mutant, including the succinate dehydrogenase complex. Interestingly, abundance of the latter is not altered, indicative of a direct impact of CL deficiency on the enzymatic capacity of this electron transfer chain protein complex.

Organisation(s)
Institute of Plant Genetics
External Organisation(s)
University of Western Australia
University of Tokyo
RWTH Aachen University
Type
Article
Journal
Frontiers in Plant Science
Volume
8
ISSN
1664-462X
Publication date
08.02.2017
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Plant Science
Electronic version(s)
https://doi.org/10.3389/fpls.2017.00072 (Access: Open)